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1 Curve curvature

Intuitive idea of curvature: The rate of the “bending” of the curve away from its normal.

Intuitive idea of torsion: The rate of the “bending” of the curve away from its “tangent plane”.

Recall that

κ(t) =
∥α′(t)× α′′(t)∥

∥α′(t)∥3
.

Example on computation: (Just computational exhaustive):

Example 1.1. Find the curvature of Logarithmic spiral: α(t) = (aebt cos t, aebt sin t). a > 0, b > 0.

Solution. From the above, we have computed

α′(t) = (abebt cos t− aebt sin t, abebt sin t+ aebt cos t).

and

∥α′(t)∥ = aebt
√
1 + b2.

Hence

α′′(t) = (ab2ebt cos t− abebt sin t− abebt sin t− aebt cos t, ab2ebt sin t+ abebt cos t+ abebt cos t− aebt sin t)

= (ab2ebt cos t− 2abebt sin t− aebt cos t, ab2ebt sin t+ 2abebt cos t− aebt sin t)
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Therefore, we have

α′(t)× α′′(t) =

∣∣∣∣∣∣∣∣∣
i j k

abebt cos t− aebt sin t abebt sin t+ aebt cos t 0

ab2ebt cos t− 2abebt sin t− aebt cos t ab2ebt sin t+ 2abebt cos t− aebt sin t 0

∣∣∣∣∣∣∣∣∣
= [(abebt cos t− aebt sin t)(ab2ebt sin t+ 2abebt cos t− aebt sin t)

− (abebt sin t+ aebt cos t)(ab2ebt cos t− 2abebt sin t− aebt cos t)]k

= a2e2bt[b3 sin t cos t+ 2b2 cos2 t− b sin t cos t− b2 sin2 t− 2b sin t cos t+ sin2 t

− b3 sin t cos t+ 2b2 sin2 t− b sin t cos t+ b2 cos2 t+ 2b sin t cos t+ cos2 t]k

= a2e2bt[b2 cos2 t+ b2a2 sin2 t++sin2 t+ cos2 t]k

= a2(1 + b2)e2btk

Therefore we have

κ(t) =
∥α′(t)× α′′(t)∥

∥α′(t)∥3

=
a2(1 + b2)e2bt

(aebt
√
1 + b2)3

=
a2(1 + b2)e2bt

a3e3bt(1 + b2)
3
2

=
1

aebt
√
1 + b2

Exercise: Prove that the curvature of the curve defined by r = r(θ) in polar coordinates is given by

κ(θ) =
|2r′2 − rr′′ + r2|

(r2 + r′2)
3
2

Key:

i Recall the formula κ(θ) =
|x′y′′ − x′′y′|
(x′2 + y′2)

3
2

for 2-D curve. What we need to do is to express the curve in terms of

Catesterian coordinate first.

ii Note that for r = r(θ), the radial component r is a function of θ, the angular component (This is just the same as

using f to express f(x). Don’t regard r in our question as a constant!).

Hence we can express the curve as (r(θ) cos θ, r(θ) sin θ).

iii Then we have

x′(θ) = r′(θ) cos θ − r(θ) sin θ

y′(θ) = r′(θ) sin θ + r(θ) cos θ

x′′(θ) = r′′(θ) cos θ − r′(θ) sin θ − r′(θ) sin θ − r(θ) cos θ = r′′(θ) cos θ − 2r′(θ) sin θ − r(θ) cos θ

y′′(θ) = r′′(θ) sin θ + r′(θ) cos θ + r′(θ) cos θ − r(θ) sin θ = r′′(θ) sin θ ++2r′(θ) cos θ − r(θ) sin θ
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Then we have

[x′2 + y′2]
3
2 = [(r′(θ) cos θ − r(θ) sin θ)2 + (r′(θ) sin θ + r(θ) cos θ)2]

3
2

= [r′(θ)2 cos2 θ − 2r(θ)r′(θ) sin θ cos θ + r(θ)2 sin2 θ + r′(θ)2 sin2 θ + 2r(θ)r′(θ) sin θ cos θ + r(θ)2 cos2 θ]
3
2

= [r′(θ)2(cos2 θ + sin2 θ) + r(θ)2(cos2 θ + sin2 θ)]
3
2

= (r(θ)2 + r′(θ)2)
3
2

x′y′′ = [r′(θ) cos θ − r(θ) sin θ][r′′(θ) sin θ + 2r′(θ) cos θ − r(θ) sin θ]

= r′(θ)r′′(θ) sin θ cos θ + 2r′(θ)2 cos2 θ − r(θ)r′(θ) sin θ cos θ − r(θ)r′′(θ) sin2 θ − 2r(θ)r′(θ) sin θ cos θ + r(θ)2 sin2 θ

x′′y′ = [r′′(θ) cos θ − 2r′(θ) sin θ − r(θ) cos θ][r′(θ) sin θ + r(θ) cos θ]

= r′(θ)r′′(θ) sin θ cos θ + r(θ)r′′(θ) cos2 θ − 2r′2(θ) sin2 θ − 2r(θ)r′(θ) sin θ cos θ − r(θ)r′(θ) sin θ cos θ − r(θ)2 cos θ

x′y′′ − x′′y′ = 2r′(θ)2[cos2 θ + sin2 θ]− r(θ)r′′(θ)[sin2 θ + cos2 θ] + r(θ)2[cos2 θ + sin2 θ]

= 2r′(θ)2 − r(θ)r′′(θ) + r(θ)2

Then we have

κ(θ) =
|x′y′′ − x′′y′|
(x′2 + y′2)

3
2

=
|2r′(θ)2 − r(θ)r′′(θ) + r(θ)2|

(r(θ)2 + r′(θ)2)
3
2

Exercise:

i Consider the curve C given by the graph of the function y = ln cscx, 0 < x < π, in rectangular coordinates.

( 1 ) Show that r(s) = (2 tan−1 es, ln cosh s), s ∈ R is an arc length parametrization of C.

( 2 ) Show that the curvature of the curve is

κ(s) =
1

cosh s

2 Frenet frame (Part II)

Aim: Use T, N, B to understand a curve.

Remark: Note that ∥x∥ is differentiable except x = 0.

Therefore, for a differentiable function f such that f(t) ̸= 0 for all t, we have ∥f∥ to be differentiable for all t.
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Example 2.1. Let r(s) : R → R3 be a regular space curve with arc length parametrization, T(s) and N(s) be the unit

tangent vector and unit normal vector respectively. Suppose κ(s) > 0 for any s ∈ R and there exists a constant c and a

constant unit vector u such that ⟨T(s),u⟩ = c for all s ∈ R.

i Show that N(s) and u are orthogonal for all s.

ii Using (a), show that there exists a constant θ such that

u = cos θT(s) + sin θB(s)

for all s ∈ R.

iii Using (b) and the Frenet formulas, or otherwise, prove that

τ(s)

κ(s)
= cot θ.

Solution. i

⟨T(s),u⟩ = c

d

ds
⟨T(s),u⟩ = 0

⟨κ(s)N(s),u⟩ = 0

⟨N(s),u⟩ = 0 (As κ(s) > 0 for any s ∈ R by assumption.)

Hence N(s) and u are orthogonal for all s ∈ R.

ii Note that from lecture notes, for all s ∈ R, {T(s),N(s),B(s)} forms an orthonormal basis. Then for each s ∈ R we

can find α(s), β(s), γ(s) ∈ R, such that

u = α(s)T(s) + β(s)N(s) + γ(s)B(s).

Here as {T(s),N(s),B(s)} is changing for all s ∈ R3, we can’t simply assume those coefficients

α(s), β(s), γ(s) ∈ R are constant for all s ∈ R. We need to further show that

( 1 ) β(s) = 0 for all s ∈ R.

( 2 ) α(s)2 + γ(s)2 = 1 for all s ∈ R.

( 3 ) α(s), γ(s) is constant for all s ∈ R, then we can define the constant to be α, γ respectively. Also, we need to

show that

Proof.

( 1 ) From (a), ⟨N,u⟩ = 0 for all s ∈ R.
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Hence by taking inner product with N(s) on both side of u = α(s)T(s) + β(s)N(s) + γ(s)B(s), we have

⟨N(s),u⟩ = ⟨N(s), α(s)T(s) + β(s)N(s) + γ(s)B(s)⟩

0 = β(s)(1) (As ⟨N(s),T(s)⟩ = ⟨N(s),B(s)⟩ = 0 and ⟨N(s),N(s)⟩ = 1)

β(s) = 0

This means we have

u = α(s)T(s) + γ(s)B(s).

( 2 ) Note that from the question, u is an unit vector, hence we have

⟨u,u⟩ = 1

⟨α(s)T(s) + γ(s)B, α(s)T(s) + γ(s)B⟩ = 1

α(s)2(1) + γ(s)2(1) = 1 (As ⟨N(s),T(s)⟩ = 0 and ⟨T(s),T(s)⟩ = ⟨N(s),N(s)⟩ = 1)

α(s)2 + γ(s)2 = 1

( 3 ) Note that as ⟨T(s),u⟩ = c for all s ∈ R, by taking inner product between u = α(s)T(s) + γ(s)B(s) and T(s),

we have

⟨T(s),u⟩ = ⟨T(s), α(s)T(s) + γ(s)B(s)⟩

c = α(s) for all s ∈ R

Thereby γ(s)2 = 1− α(s)2 = 1− c2 , which is a constant.

So we can denote the coeffecient α(s) and γ(s) to be constants α and γ respectively.

(You may wonder that there are two possible values of γ, namely
√
1− c2 and −

√
1− c2. In fact, by continuity

of T,N,B, there is only one choice of γ only. I will not talk about the reason here.)

Also, note that from α(s)2 + γ(s)2 = 1, we have |α|, |γ| ≤ 1. So we can safely let α = cos θ and γ = sin θ for

some constant θ ∈ R. Then we can solve the value of θ by
γ

α
= tan θ if α ̸= 0. If α = 0, just simply check the

values of γ to determine whether θ = 0 or π.

iii Differentiating the equation u = cos θT(s) + sin θB(s) with respect to both side by s, we have

d

ds
u =

d

ds
[cos θT(s) + sin θB(s)]

0 = cos θκ(s)N(s)− sin θτ(s)N(s)

cos θκ(s)N(s) = sin θτ(s)N(s) for all s ∈ R

cos θκ(s) = sin θτ(s)

τ(s)

κ(s)
= cot θ
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Example 2.2. Suppose all tangent of a parameterized curve α : I → R3 pass through a fixed point, show that the trace

α(I) of the curve is contained in a straight line.

Solution. Without loss of generality, we can assume the curve to be parameterized by arc-length.

Denote the fixed point that all tangent of a parameterized curve α : I → R3 pass through to be p0.

To show that the trace α(I) of the curve is contained in a straight line, we need to show that curvature κ(t) = 0 for all

t ∈ I.

Then note that

i T (t) = α′(t) as α is parameterized by arc-length.

ii T (t) = c(t)(α(t)− p0), where c(t) =
1

∥α(t)− p0∥
as all tangent of a parameterized curve α : I → R3 pass through a

fixed point.

The function c(t) =
1

∥α(t)− p0∥
is used to normalize the R.H.S to make magnitude of R.H.S to be unit 1. It is

differentiable as α is regular, ∥T ′(t)∥ ≠ 0 for all t ∈ I

From the above, we have

α′(t) = c(t)(α(t)− p0)

α′′(t) = c′(t)(α(t)− p0) + c(t)α′(t)

Then we have

κ(t) =
∥α′(t)× α′′(t)∥

∥α′(t)∥3

=
∥α′(t)× [c′(t)(α(t)− p0) + c(t)α′(t)]∥

∥α(t)′∥3

=
∥α′(t)× [c′(t)(α(t)− p0)]∥

∥α′(t)∥3
(As u× u = 0)

=
0

∥α′(t)∥3
(As α′(t) = c(t)(α(t)− p0), we have α′(t) parallel to (α(t)− p0), therefore α′(t)× (α(t)− p0) = 0)

= 0

Hence the trace α(I) of the curve is contained in a straight line.

Example 2.3. Suppose all normal of a parameterized curve α : I → R3 pass through a fixed point, show that the trace

α(I) of the curve is contained in a circle.

Solution. Denote p0 be the fixed point the all normal of α : I → R3 pass through. To think of the centre of the “circle”,

one of reasonable choices is p0 To show that the trace α(I) of the curve is contained in a circle, we need to show the

following two things:

i For all t ∈ I, ∥α(t)− p0∥ is a constant.

ii α(I) lies on a plane (i.e. Torsion τ(t)=0 for all t ∈ I.)

(Circle is a 2D object. If we do not ensure that α(I) lies on a plane so that αI, α(I) may lie on a sphere.)
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Let’s show the above two are correct. Without loss of generality, we can assume the curve to be parameterized by

arc-length (Then we can use T, N, B freely).

i Showing for all t ∈ I, ∥α(t)− p0∥ is a constant.

Note that “∥α(t)− p0∥ is a constant.” is equivalent to ∥α(t)− p0∥2 is a constant.

Also, differentiating ∥α(t) − p0∥2 =< α(t) − p0, α(t) − p0 > is much easier than differentiating ∥α(t) − p0∥ =<

α(t)− p0, α(t)− p0 >
1
2 . (Of course we don’t like handling differentiation with square root.) Then

d

dt
∥α(t)− p0∥2 =

d

dt
< α(t)− p0, α(t)− p0 >

= 2 < α′(t), α(t)− p0 >

= 2 < T(t), α(t)− p0 >

= 0 (As normal passes through α(t) and −p0 α(t)− p0 is parallel to N(t).

Hence 2 < T(t), α(t)− p0 >= 2k < T(t),N(t) >= 0 for some k ∈ R)

ii Showing τ(t) = 0 for all t ∈ I:

Method 1:

Recall that 
T′ = κN

N′ = −κT +τB

B′ = −τN

Recall that

τ =
< α′ × α′′, α′′′ >

∥α′ × α′′∥2
.

Then as we assume the path is parameterized by arc-length, we have T = α′. Then we have

To show that τ(t) = 0, we just need to show that < α′ × α′′, α′′′ >≡ 0.

Thinking process: First

( 1 )

T′ = κN

(α′)′ = κN

α′′ = κN

( 2 ) Also, from the question, and N, α− p0 ̸= 0 we can find some differentiable function f such that

N = f [α− p0].
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( 3 ) Hence, we have

α′′ = κf [α− p0]

α′′′ = κ′f [α− p0] + κf ′[α− p0] + κfα′

( 4 ) Therefore, as [α− p0] is parallel to α′′, we have < κ′f [α− p0] + κf ′[α− p0], α
′′′ >= 0.

Also, we have

< α′ × α′′, κfα′ >= κf < α′ × α′′, α′ >= 0.

Therefore, we have

< α′ × α′′, α′′′ >≡ 0.

Method 2:

Note that α− p0 is parallel to N and N = κT′ = κT ′′ = κα′′ is parallel to α′′.

(Note that as we assume every normal passes through p0, the normal must not be 0, hence we have α′′ ̸= 0 and

κ ̸= 0.)

Hence we have

(α− p0)× α′′ = 0

[(α− p0)× α′′]′ = 0

α′ × α′′ + (α− p0)× α′′′ = 0

α′ × α′′ = −(α− p0)× α′′′

Hence we have

τ =
< α′ × α′′, α′′′ >

∥α′ × α′′∥2

=
< −(α− p0)× α′′′, α′′′ >

∥α′ × α′′∥2

= 0

This means that α(I) lies on a plane.

Hence combining both parts, we have α(I) is contained in a circle.

3 Multi-variable differentiation

3.1 Partial Derivative

Key: Treating the another variable as “constant” during partial differentiation.

Example 3.1. Let f(x, y) = 3x2y + sinxy + ey
2

.
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Then for
∂f

∂x
, we have

∂f

∂x
(3x2y) = 6xy (As

d

dx
(3x2 · k) = 6kx when k is a constant. Here we regard y as “constant“ and take k = y.

∂f

∂x
(sinxy) = y cosxy (Note that

d

dx
(sin kx) = k cos kx when k is a constant. Here we regard y as “constant“ and take k = y.)

∂f

∂x
(ey

2

) = 0 (As derivative of a constant function is 0 and we regard y as “constant“, thereby ey
2

is also a “constant”)

Thereby, we have
∂f

∂x
= 6xy + y cosxy.

Similarly, we have
∂f

∂y
= 3x2 + x cosxy.

Order: d from left to right. fxy =
∂

∂y

(
∂f

∂x

)
If a function f is C2 , then

fxy = fyx

If the function is not C2, symmetry does not hold.

(Refer to https://en.wikipedia.org/wiki/Symmetry of second derivatives#Requirement of continuity for more

details.)
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Exercise 3.1. Compute fx, fy, fxx, fyy and fxy of the following functions:

i f(x, y) = x3y − cos (x2 + 2y).

ii f(x, y) = sin (exy) + x3y2 + 7x− 4y4.

iii f(x, y) = ln (x2 + y2).

Solution.

Answer:

i

fx = 3x2y + 2x sin (x2 + 2y)

fy = x3 + 2 sin (x2 + 2y)

fxx = 6xy + 2 sin (x2 + 2y) + 4x2 cos (x2 + 2y)

fyy = 4 cos (x2 + 2y)

fxy = 3x2 + 4x cos (x2 + 2y)

ii

fx = yex cos (exy) + 3x2y2 + 7

fy = ex cos (exy) + 2x3y − 16y3

fxx = yex cos (exy)− y2e2x sin (exy) + 6xy2

fyy = −e2x sin (exy) + 2x3 − 48y2

fxy = ex cos (exy)− ye2x sin (exy) + 6x2y

3.2 Taylor series

You might have heard that

ex =

∞∑
n=0

xn

n!
= 1 + x+

x2

2
+ ...

A natural question arise: Can we use polynomial series to calculate the value of every function?

Let’s guess a formula for Taylor series: Let

f(x) =

∞∑
n=0

anx
n.

Then note that if we differentiate both side k times, we have

fk(x) =

∞∑
n=k

(n)(n− 1)...(n− k − 1)anx
n−k = (k!)ak +

∞∑
n=k+1

(n)(n− 1)...(n− k − 1)anx
n−k.

(Note that the first k terms in the original series vanish as
dk

dxk
(xn) = 0 for all n = 0, 1, ..., k − 1.)
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Substituting x = 0, we have

fk(0) = k!ak (Note that 0a = 0 for all positive integer a.)

ak =
f (k)(0)

k!

Thereby, we have the general formula

f(x) =

∞∑
n=0

f (k)(0)

k!
xn.

Let’s go back to the problem: Can we use polynomial series to calculate the value of every function? The answer is no.

Firstly, from our method of finding the series, we require f to be k−times differentiable for all non-negative integers k. So

for functions that are not infinitely many differentiable, we cannot expressed it in terms of Taylor series.

Even though the function is infinitely many differentiable, the function may still not be able to be expressed in terms

of Taylor series. For instance, f(x) = e−
1
x2 . You may try to show that f (n)(0) = 0 for all non-negative integers n. Then,

the Taylor series of f(x) = e−
1
x2 would be 0, which is impossible.

There are some question remains, but we will not address here as it reqruies understanding on Mathematical analysis.

You will find more information when you take undergraduate courses:

i Does the infinite sum converge? For what value(s) of x does the infinite sum converge?

ii For an infinitely differentiable function, when can we assure that the function can be expressed in terms of its Taylor

series?

3.3 Chain rule

In 1D, the chain rule is

(f ◦ g)′(x) = f ′(g(x))g′(x).

(Challenge: Prove the 1D chain rule. Make sure that your proof works for all types of differentiable function)

How about for functions with more than 1 variable?

3.4 Change of variable theorem

Example 3.2 ( A circle/sphere/cylinder). i Circle of radius r centred at (a, b): {(x, y) : (x− a)2 + (y − b)2 = r2}.

ii Sphere of radius r centred at (a, b, c): {(x, y, z) : (x− a)2 + (y − b)2 + (z − c)2 = r2}.

iii Cylinder with radius r: {(x, y, z) : (x− a)2 + (y − b)2+ = r2, a ≤ z ≤ b}.

It is computational exhaustive to set up bounds for range of integral and hard to understand the picture.

Therefore, we want to use another coordinate system to understand the picture.
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Definition 3.1 (Jacobian). The Jacobian of a two-variable function f(x, y) = (f1(x, y), f2(x, y)) is defined as


∂f1
∂x

∂f1
∂y

∂f2
∂x

∂f2
∂y


While the Jacobian of a three-variable function f(x, y, z) = (f1(x, y, z), f2(x, y, z), f3(x, y, z)) is defined as


∂f1
∂x

∂f1
∂y

∂f1
∂z

∂f2
∂x

∂f2
∂y

∂f2
∂z

∂f3
∂x

∂f3
∂y

∂f3
∂z


Idea of determinant: To show the “change“ of signed volume of a region through a linear transformation(Recall that

every matrix can be regarded as a representation of a linear transformation.)

Theorem 3.1 (Change of Variable Theorem in 1D).

Let g : [a, b] → R be a C1 function(i.e. g′ is continuous on [a, b]), and f : R → R is continuous, then

∫ g(b)

g(a)

f(x) dx =

∫ b

a

f ◦ g(t) · g′(t) dt.

In general, we use the formula in the following way: Let g : [a, b] → R be a C1 injective function on [a, b] (hence

g−1 : g([a, b]) → [a, b] exists ) (or sometimes we assume g′ ̸= 0 on [a, b], which implies injectivity, but injectivity does not

imply g′ ̸= 0 on [a, b]. For instance, f(x) = x3 is injective, but f ′(0) = 0.) and f : R → R is continuous, then

∫ d

c

f(x) dx =

∫ g−1(d)

g−1(c)

f ◦ g(t) · g′(t) dt.

Note that without injectivity, we cannot define g−1, and the lower and upper limit of the integral in R.H.S.

(So now you can understand why when doing

∫ b

a

1√
1− x2

dx and letting x = sin θ (thereby dx = cos θdθ), we set the

range −π

2
< θ <

π

2
. This ensures injectivity of sin θ in this domain and thereby we can well-define arcsin a and arcsin b,

and the integral in R.H.S:

∫ arcsin b

arcsin a

cos θ√
1− sin2 θ

dθ.)

The formula is similar for higher dimension:

Theorem 3.2 (Change of Variable Theorem in higher dimension).

Let g : A → B be a diffeomorphism between two bounded open subsets A,B ⊂ Rn with measure zero boundary (i.e. g is

bijective and g, g−1 are differentiable). For any continuous function f : B → R is continuous, we have

∫
B

f dV =

∫
A

f ◦ g(t) · | det(Dg)| dV.

where Dg is the Jacobian of g.

Remark. Remark: Don’t be afraid of the words “diffeomorphism”, “open subsets“, “measure zero boundary”. In our

homework/tests/exams, if a question requires you to use this theorem, you don’t need to check these things. You don’t
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need to know what they mean in this course. Just simply use it. In fact, some of these concepts are from advanced Math

courses!

Let’s try this formula with a simple example.

Example 3.3. Find the area of the region R bounded by a parallelogram with three of vertexes to be (0, 0), (1, 1) and (1, 2).

Define a = (1, 1) and b = (1, 3). From secondary school stuff, we know that

Area = ∥u× v∥

=

∣∣∣∣∣∣∣∣∣
i j k

1 1 0

1 3 0

∣∣∣∣∣∣∣∣∣
= |2k|

= 2

We can also use change of variable theorem to find the area: Note that the region R can be parametrized by the following:

(As shown in the figure): R = {s(1, 1) + t(1, 3) : 0 ≤ t, s ≤ 1}.

Then we can define a linear transformation from [0, 1]× [0, 1] to R:

(x, y) = (s+ t, s+ 3t) = (f1(s, t), f2(s, t)).

Then we have

∂f1
∂s

= 1

∂f1
∂t

= 1

∂f2
∂s

= 1

∂f2
∂t

= 3

Therefore,

Jacobian of f =

∂f1
∂s

∂f1
∂t

∂f2
∂s

∂f2
∂t

 =

1 1

1 3


and

dA = dxdy

=

∣∣∣∣∣∣1 1

1 3

∣∣∣∣∣∣ dsdt
= 2 dsdt
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Hence by Theorem 3.2, we have

Area =

∫
R

1 dA

=

∫ 1

0

∫ 1

0

2 dsdt

= 2

∫ 1

0

[s]10dt

= 2

∫ 1

0

dt

= 2[t]10

= 2

Now, we are going to give the formula for polar, cylindrical and spherical coordinates and find the Jacobian matrix of

the transformation.

Example 3.4. Polar coordinate: (x, y) = (r cos θ, r sin θ), where r and θ are called radial and angular component respec-

tively and 0 ≤ θ < 2π.

Then let x = f1(r, θ) = r cos θ and y = f2(r, θ) = r sin θ. We have

∂f1
∂r

= cos θ

∂f1
∂θ

= −r sin θ

∂f2
∂r

= sin θ

∂f2
∂θ

= r cos θ

Therefore, we have

Jacobian =


∂f1
∂x

∂f1
∂y

∂f2
∂x

∂f2
∂y

 =

cos θ −r sin θ

sin θ r cos θ


and

dA = dxdy

=

∣∣∣∣∣∣det
cos θ −r sin θ

sin θ r cos θ

∣∣∣∣∣∣ drdθ
= |(r cos2 θ + r sin2 θ)|drdθ

= rdrdθ

Example 3.5. Cylindrical coordinate: (x, y, z) = (r cos θ, r sin θ, z). This time, we have z as a free variable independent

of r and θ. Also 0 ≤ θ < 2π
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For Jacobian, similarly, let (x, y, z) = (f1(r, θ, z), f2(r, θ, z), f3(r, θ, z)) = (r cos θ, r sin θ, z) we have

Jacobian =


∂f1
∂r

∂f1
∂θ

∂f1
∂z

∂f2
∂r

∂f2
∂θ

∂f2
∂z

∂f3
∂r

∂f3
∂θ

∂f3
∂z

 =


cos θ −r sin θ 0

sin θ r cos θ 0

0 0 1


and

dV = dxdydz

=

∣∣∣∣∣∣∣∣∣det

cos θ −r sin θ 0

sin θ r cos θ 0

0 0 1


∣∣∣∣∣∣∣∣∣ drdθdz

= rdrdθdz

Example 3.6. Spherical coordinate: (x, y, z) = (r sinϕ cos θ, r sinϕ sin θ, r cosϕ), where 0 ≤ θ < 2π and 0 ≤ ϕ < π.

θ can still be regarded as the angular component in the circle parallel to x-y plane. But this time, r does not just lie on x−y

plane only. Instead, its orientation is controlled by ϕ. When ϕ = 0, the point is (r sin 0 cos θ, r sin 0 sin θ, r cos 0) = (0, 0, r),

the highest point in the sphere. When ϕ = π, the point is (r sinπ cos θ, r sinπ sin θ, r cosπ) = (0, 0,−r), the lowest point in

the sphere.

For Jacobian, similarly, let (x, y, z) = (f1(r, θ, ϕ), f2(r, θ, ϕ), f3(r, θ, z)) = (r sinϕ cos θ, r sinϕ sin θ, r cosϕ), we have

Jacobian =


∂f1
∂r

∂f1
∂θ

∂f1
∂ϕ

∂f2
∂r

∂f2
∂θ

∂f2
∂ϕ

∂f3
∂r

∂f3
∂θ

∂f3
∂ϕ

 =


sinϕ cos θ −r sinϕ sin θ r cosϕ cos θ

sinϕ sin θ r sinϕ cos θ r cosϕ sin θ

cosϕ 0 −r sinϕ



and

dV = dxdydz

=

∣∣∣∣∣∣∣∣∣det

sinϕ cos θ −r sinϕ sin θ r cosϕ cos θ

sinϕ sin θ r sinϕ cos θ r cosϕ sin θ

cosϕ 0 −r sinϕ


∣∣∣∣∣∣∣∣∣ drdθdϕ

= | cosϕ(−r2 sinϕ cosϕ sin2 θ − r2 sinϕ cosϕ cos2 θ)− r sinϕ(r sin2 ϕ cos2 θ + r sin2 ϕ sin2 θ)|drdθdϕ

= | − r2 sinϕ cos2 ϕ[sin2 θ + cos2 θ]− r2 sin3 ϕ[cos2 θ + sin2 θ]|drdθdϕ

= | − r2 sinϕ cos2 ϕ− r2 sin3 ϕ|drdθdϕ

= r2| sinϕ|| cos2 ϕ+ sin2 ϕ|drdθdϕ

= r2| sinϕ|drdθdϕ

= r2 sinϕdrdθdϕ (As we assume ϕ ∈ [0, π) and 0 ≤ sinϕ ≤ 1 for ϕ ∈ [0, π))
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Definition 3.2 (Volume of 3D region).

The volume of a 3D region R is defined to be

Volume =

∫∫∫
R

1 dV

Example 3.7. Show that volume of a sphere of radius r is
4πr2

3
respectively.

Example 3.8. Find the volume of the region R bounded by the curve z = x2 + y2 and z = 4.

Step 1: Parameterize the region for computing volume: Note that x2+y2 can be regarded as a cirlce, so we can use polar

coordinate to parametrize (x, y) as (r cos θ, r sin θ), where 0 ≤ θ < 2π.

For the height z, note that it is bounded above by 4. For the lower bound, from the picture below, we can find

that z ≥ x2 + y2 = r2.

Therefore, we have r2 ≤ z ≤ 4. In particular, r2 ≤ 4 and thereby r ≤ 2. So we can use cylindrical coordinate to

parametrize the region and the region is {(r cos θ, r sin θ, z) : 0 ≤ r ≤ 2, 0 ≤ θ < 2π, r2 ≤ z ≤ 4}

Step 2: Compute the integral:

Volume =

∫ 2

0

∫ 2π

0

∫ 4

r2
r dzdθdr (As the range of z is affected by r, dz should be put in the most inside one.)

=

∫ 2

0

∫ 2π

0

r[z]4r2dθdr

=

∫ 2

0

∫ 2π

0

r(4− r2)dθdr

=

∫ 2

0

r(4− r2)[θ]2π0 dr

= 2π

∫ 2

0

4r − r3dr

= 2π[2r2 − r4

4
]20

= 2π[2(2)2 − 24

4
]

= 2π(4)

= 8π
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